If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3n^2-9=0
a = 3; b = 0; c = -9;
Δ = b2-4ac
Δ = 02-4·3·(-9)
Δ = 108
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{108}=\sqrt{36*3}=\sqrt{36}*\sqrt{3}=6\sqrt{3}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{3}}{2*3}=\frac{0-6\sqrt{3}}{6} =-\frac{6\sqrt{3}}{6} =-\sqrt{3} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{3}}{2*3}=\frac{0+6\sqrt{3}}{6} =\frac{6\sqrt{3}}{6} =\sqrt{3} $
| r=2*3.14/94 | | –19p–2p+16p+12=–18 | | 94=2*3.14*r | | 44=12=8x | | 3x+12=x-26 | | x÷23=56 | | 3y-9=y-15 | | (x+2)^2-90=5(0.5x-17) | | x^2=-68x+580 | | (x+2)2-90=5(0.5x-17) | | x2=-68+580 | | 5(63m)=20 | | (D^2-25)y=0 | | 9x+10=−2 | | (D^2-10D+25)y=0 | | y=30-2y | | X8=3x | | 20n^2+180n-6775=0 | | 2x+2x+x=30+x+70+2x-10=X | | x+2x+2x+x=30+x+70+2x-10=X | | 7y–8=5y+2 | | 5a+0=125 | | 4x+2x-3x=6x+4x-x | | (x+70)°(2x)°(2x)°2x–10)°(x+30)°=x° | | 5(h+3)=2(4h-10)+14 | | 3^2x.2^2x=144 | | 2+6x=7x-4 | | 85x-0.5x^2=0 | | 115°=2x+1 | | (x+5)(2x-9)=9 | | 7x+2=5x–8 | | 3(x–8)=–18 |